Citation: | LIU Xuewei, LEI Junqiang, LIU Bin, et al. Study on mechanical properties and energy evolution of composite laminated rocks with weak layer[J]. Journal of Mining and Strata Control Engineering, 2025, 7(1): 013027. DOI: 10.13532/j.jmsce.cn10-1638/td.yszt-1036 |
Composite laminated rocks are widely existed in rock engineering, where the geometric characteristics (inclination angle and thickness) of the weak layers have a crucial impact on the stability of the rock mass. To study the influence of the thickness and inclination angle of the weak layer on the mechanical behavior of composite laminated rocks, uniaxial compression tests were carried out on composite laminated samples containing weak layers with different inclination angles (0°, 30°, 45°, 60°) and thicknesses (1, 2, 3, 4 cm). The results show that the peak strength and elastic strain energy density of the samples gradually decrease as the inclination angle of the weak layer increases. However, the rate of decrease diminishes with the increase of layer thickness, while the failure mode gradually transitions from overall failure within the non-layered plane to shear failure along the layered plane. As the thickness of weak layer increases, the peak strength of samples gradually decreases, while the failure mode transitions from slip along the layered plane to a combination of axial splitting failure and slip along the layered plane. Furthermore, the maximum information coefficient analysis shows that the thickness and inclination angle of weak layer are the main controlling factors for the mechanical properties and energy characteristics of the samples, respectively. Additionally, based on energy theory analysis and combined with the elastic strain energy ratio before the peak strength, it was found that different inclination angles and thicknesses of the weak layer led to distinct energy release patterns, which in turn affect the failure modes and strength characteristics of samples. The results above reveal the significant influence of weak layers in composite laminated surrounding rock, demonstrating practical application value for the stability analysis and design of rock masses.
[1] |
康红普. 煤炭开采与岩层控制的时间尺度分析[J]. 采矿与岩层控制工程学报, 2021, 3(1): 013538.
KANG Hongpu. Temporal scale analysis on coal mining and strata control technologies[J]. Journal of Mining and Strata Control Engineering, 2021, 3(1): 013538.
|
[2] |
张泽林, 王涛, 吴树仁, 等. 泥岩中软弱夹层的剪切力学特性研究[J]. 岩石力学与工程学报, 2021, 40(4): 713−724.
ZHANG Zelin, WANG Tao, WU Shuren, et al. Study on shear mechanical properties of mudstone with weak intercalation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 713−724.
|
[3] |
彭岩岩, 郦亦凡, 余虎, 等. 基于真三轴卸载试验不同倾角组合煤岩力学特性研究[J]. 采矿与岩层控制工程学报, 2024, 6(2): 023037.
PENG Yanyan, LI Yifan, YU Hu, et al. Mechanical properties of coal and rock with different dip angles based on true triaxial unloading test[J]. Journal of Mining and Strata Control Engineering, 2024, 6(2): 023037.
|
[4] |
左建平, 宋洪强. 煤岩组合体的能量演化规律及差能失稳模型[J]. 煤炭学报, 2022, 47(8): 3037−3051.
ZUO Jianping, SONG Hongqiang. Energy evolution law and differential energy instability model of coal-rock combined body[J]. Journal of China Coal Society, 2022, 47(8): 3037−3051.
|
[5] |
段会强, 王超, 孙明. 煤岩组合体峰后卸加载力学特性及支护作用机理[J]. 采矿与安全工程学报, 2024, 41(2): 372−383.
DUAN Huiqiang, WANG Chao, SUN Ming. Mechanical characteristics and support mechanism of coal-rock combined body under unloading-loading conditions beyond peak strength[J]. Journal of Mining & Safety Engineering, 2024, 41(2): 372−383.
|
[6] |
孔洋, 阮怀宁, 汪璋淳. 玄武岩脆性类岩石相似模型材料比选与力学特性测试研究[J]. 岩土工程学报, 2023, 45(11): 2308−2318. DOI: 10.11779/CJGE20220984
KONG Yang, RUAN Huaining, WANG Zhangchun. Selection and mechanical properties testy of similar brittle rock-like model materials of basalt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2308−2318. DOI: 10.11779/CJGE20220984
|
[7] |
刘晓云, 叶义成, 王其虎, 等. 单轴压缩下不同强度组合复合岩体相似材料试件力学特性研究[J]. 岩土力学, 2017, 38(S2): 183−190.
LIU Xiaoyun, YE Yicheng, WANG Qihu, et al. Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression[J]. Rock and Soil Mechanics, 2017, 38(S2): 183−190.
|
[8] |
姚琦, 冯涛, 王卫军, 等. 矿山开采相似材料配比及力学试验研究[J]. 安全与环境学报, 2017, 17(6): 2129−2134.
YAO Qi, FENG Tao, WANG Weijun, et al. On preparing the materials as close as possible in the experimental ratio and mechanical properties with those gained from mining[J]. Journal of Safety and Environment, 2017, 17(6): 2129−2134.
|
[9] |
姚文杰, 刘学伟, 刘滨, 等. 煤–过渡层–岩组合体物理力学特征试验及数值模拟研究[J]. 岩石力学与工程学报, 2024, 43(1): 184−205.
YAO Wenjie, LIU Xuewei, LIU Bin, et al. Experimental and numerical simulation study on mechanical properties of coal transition layer-rock composite structures[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 184−205.
|
[10] |
余伟健, 潘豹, 李可, 等. 岩−煤−岩组合体力学特性及裂隙演化规律[J]. 煤炭学报, 2022, 47(3): 1155−1167.
YU Weijian, PAN Bao, LI Ke, et al. Mechanical properties and fracture evolution law of rock-coal-rock combination[J]. Journal of China Coal Society, 2022, 47(3): 1155−1167.
|
[11] |
陈光波, 李谭, 杨磊, 等. 不同煤岩比例及组合方式的组合体力学特性及破坏机制[J]. 采矿与岩层控制工程学报, 2021, 3(2): 023522.
CHEN Guangbo, LI Tan, YANG Lei, et al. Mechanical properties and failure mechanism of combined bodies with different coal-rock ratios and combinations[J]. Journal of Mining and Strata Control Engineering, 2021, 3(2): 023522.
|
[12] |
陈绍杰, 李法鑫, 尹大伟, 等. 不同高比灰岩−煤组合体变形破坏特征实验研究[J]. 中南大学学报(自然科学版), 2023, 54(6): 2459−2472.
CHEN Shaojie, LI Faxin, YIN Dawei, et al. Experimental study on deformation failure characteristics of limestone-coal composite with different rock-coal height ratios[J]. Journal of Central South University (Science and Technology), 2023, 54(6): 2459−2472.
|
[13] |
付斌, 周宗红, 王友新, 等. 不同煤岩组合体力学特性的数值模拟研究[J]. 南京理工大学学报, 2016, 40(4): 485−492.
FU Bin, ZHOU Zonghong, WANG Youxin, et al. Numerical simulation of different combination of coal and rock sample mechanics and acoustic emission characteristics[J]. Journal of Nanjing University of Science and Technology, 2016, 40(4): 485−492.
|
[14] |
LIN H, LI S, ZHANG X. Macro-micro failure and crack coalescence behavior of soft-hard composite rock with three parallel joints under uniaxial compression[J]. Journal of Materials Research and Technology, 2024, 29: 2947−2958. DOI: 10.1016/j.jmrt.2024.02.029
|
[15] |
WANG H, HU J, XIA Z, et al. Mechanical properties and damage evolution characteristics of composite rock mass with prefabricated fractures[J]. Computational Particle Mechanics, 2024: 1−21.
|
[16] |
CHENG J, YANG S, CHEN K, et al. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation(DIC)[J]. Acta Mechanica Sinica, 2017, 33: 999−1021. DOI: 10.1007/s10409-017-0706-3
|
[17] |
TIEN Y, KUO M, JUANG C. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8): 1163−1181. DOI: 10.1016/j.ijrmms.2006.03.011
|
[18] |
LUO P, WANG L, LI D, et al. Deformation and failure mechanism of horizontal soft and hard interlayered rock under uniaxial compression based on digital image correlation method[J]. Engineering Failure Analysis, 2022, 142: 106823. DOI: 10.1016/j.engfailanal.2022.106823
|
[19] |
LUO P, LI D, MA J, et al. Experimental investigation on mechanical properties and deformation mechanism of soft-hard interbedded rock-like material based on digital image correlation[J]. Journal of Materials Research and Technology, 2023, 24: 1922−1938. DOI: 10.1016/j.jmrt.2023.03.145
|
[20] |
肖长富, 邱贤德. 复合岩石在单向和三向压缩应力状态下的强度和变形特征的探讨[J]. 重庆大学学报(自然科学版), 1983(3): 23−39.
XIAO Changfu, QIU Xiande. Exploration of strength and deformation characteristics of composite rocks under uniaxial and triaxial compressive stress states[J]. Journal of Chongqing University(Natural Science Edition), 1983(3): 23−39.
|
[21] |
WANG Z, ZHU Z, ZHOU L, et al. Dynamic mechanical properties and failure characteristics of layered composite rock containing a tunnel-shaped hole[J]. Theoretical and Applied Fracture Mechanics, 2024, 129: 104217. DOI: 10.1016/j.tafmec.2023.104217
|
[22] |
LI A, XU N, DAI F, et al. Stability analysis and failure mechanism of the steeply inclined bedded rock masses surrounding a large underground opening[J]. Tunnelling and Underground Space Technology, 2018, 77: 45−58. DOI: 10.1016/j.tust.2018.03.023
|
[23] |
LI A, LIU Y, DAI F, et al. Deformation mechanisms of sidewall in layered rock strata dipping steeply against the inner space of large underground powerhouse cavern[J]. Tunnelling and Underground Space Technology, 2022, 120: 104305. DOI: 10.1016/j.tust.2021.104305
|
[24] |
YANG S Q, CHEN M, FANG G, et al. Physical experiment and numerical modelling of tunnel excavation in slanted upper-soft and lower-hard strata[J]. Tunnelling and Underground Space Technology, 2018, 82: 248−264. DOI: 10.1016/j.tust.2018.08.049
|
[25] |
LI Y, YANG S, TANG X, et al. Experimental investigation of the deformation and failure behavior of a tunnel excavated in mixed strata using transparent soft rock[J]. KSCE Journal of Civil Engineering, 2020, 24(3): 962−974. DOI: 10.1007/s12205-020-0072-8
|
[26] |
ZOU C, LI J, ZHAO X, et al. Why are tensile cracks suppressed under dynamic loading?—Transition strain rate for failure mode[J]. Extreme Mechanics Letters, 2021, 49: 101506. DOI: 10.1016/j.eml.2021.101506
|
[27] |
朱俊福, 尹乾, 张京民, 等. 深部缓倾软弱夹层巷道围岩变形演化与非对称支护[J]. 采矿与岩层控制工程学报, 2022, 4(5): 053031.
ZHU Junfu, YIN Qian, ZHANG Jingmin, et al. Deformation evolution and asymmetric support of deep-buried surrounding rock mass with a gently inclined weak interlayer[J]. Journal of Mining and Strata Control Engineering, 2022, 4(5): 053031.
|
[28] |
许海亮, 谭安福, 宋义敏, 等. 层状复合岩石变形破坏全过程接触面力学特征研究[J]. 岩土力学, 2023, 44(6): 1683−1694.
XU Hailiang, TAN Anfu, SONG Yimin, et al. Mechanical characteristics of contact surfaces during the whole process of deformation and damage of layered composite rocks[J]. Rock and Soil Mechanics, 2023, 44(6): 1683−1694.
|
[29] |
谢和平, 鞠杨, 魏立云, 等. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003−3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001
XIE Heping, JU Yang, WEI Liyun, et al. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003−3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001
|
[30] |
谢和平, 彭瑞东, 鞠杨, 等. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565−3570. DOI: 10.3321/j.issn:1000-6915.2004.21.001
XIE Heping, PENG Ruidong, JU Yang, et al. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565−3570. DOI: 10.3321/j.issn:1000-6915.2004.21.001
|
[31] |
PENG R, JU Y, WANG J G, et al. Energy dissipation and release during coal failure under conventional triaxial compression[J]. Rock Mechanics and Rock Engineering, 2015, 48: 509−526. DOI: 10.1007/s00603-014-0602-0
|
[32] |
LIU C L, WANG S L, YUAN H N, et al. Detecting unbiased associations in large data sets[J]. Big Data, 2022, 10(4): 337−355.
|
[33] |
王桂林, 张亮, 许明, 等. 单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究[J]. 岩土工程学报, 2019, 41(4): 639−647. DOI: 10.11779/CJGE201904006
WANG Guilin, ZHANG Liang, XU Ming, et al. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 639−647. DOI: 10.11779/CJGE201904006
|
[34] |
GAO M, LIANG Z, JIA S, et al. Energy evolution analysis and related failure criterion for layered rocks[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(12): 439. DOI: 10.1007/s10064-023-03445-4
|