高级检索

基于优化SSD-MobileNetV2的煤矿井下锚孔检测方法

Rock bolt borehole detection method for underground coal mines based on optimized SSD-MobileNetV2

  • 摘要: 为进一步提高煤矿井下打锚技术的自动化水平和安全性,提出了煤矿井下钢带锚孔自动检测方法。选取兼具检测精度与速度的SSD算法作为检测网络,以轻量化MobileNetV2为骨干特征提取网络建立了锚孔检测模型。针对煤矿井下钢带锚孔目标小、不易检测的问题,优化了先验框的设置,使得先验框进一步与有效感受野匹配,提高识别精度。该锚孔检测模型对于自建数据集中的锚孔目标识别准确率为94.24%,AP达94.08%,取得了较好的检测效果;检测速度可达84.73帧/s;模型大小仅为14.3 MB。模型经TensorRT优化并部署于NVIDIA Jetson Xavier NX硬件平台上,验证了模型的可应用性。

     

    Abstract: To enhance the automation level and safety of anchor drilling technology in underground coal mines, a method for automatic detection of steel strip rock bolt boreholes is proposed. The detection network utilizes the SSD algorithm, balancing detection accuracy and speed, and a lightweight MobileNetV2 backbone feature extraction network is used to establish the rock bolt borehole detection model. To address the issue of small rock bolt borehole targets in underground coal mines, the prior box is optimized to match the effective receptive field, improving recognition accuracy. The rock bolt borehole detection model achieves 94.24% accuracy and 94.08% AP for rock bolt borehole target identification in the self-built dataset, with a detection speed of 84.73FPS and a model size of only 14.3 MB. The model is optimized using TensorRT and deployed on the NVIDIA Jetson Xavier NX hardware platform to demonstrate its practicality.

     

/

返回文章
返回